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INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS
MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB)

This investigation was completed as part of the ITS-IDEA Program which is one of three IDEA programs
managed by the Transportation Research Board (TRB) to foster innovations in surface transportation. It
focuses on products and result for the development and deployment of intelligent transportation systems
(ITS), in support of the U.S. Department of Transportation’s national ITS program plan. The other two
IDEA programs areas are Transit-IDEA, which focuses on products and results for transit practice in
support of the Transit Cooperative Research Program (TCRP), and NCHRP-IDEA, which focuses on
products and results for highway construction, operation, and maintenance in support of the National
Cooperative Highway Research Program (NCHRP). The three IDEA program areas are integrated to
achieve the development and testing of nontraditional and innovative concepts, methods and technologies,
including conversion technologies from the defense, aerospace, computer, and communication sectors that
are new to highway, transit, intelligent, and intermodal surface transportation systems.
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The publication of this report does not necessarily indicate approval or endorsement of the findings,
technical opinions, conclusions, or recommendations, either inferred or specifically expressed therein, by
the National Academy of Sciences or the sponsors of the IDEA program from the United States
Government or from the American Association of State Highway and Transportation Officials or its
member states.
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A SEQUENTIAL HYPOTHESIS TESTING-BASED DECISION-MAKING SYSTEM
FOR FREEWAY INCIDENT RESPONSE

1. Executive Summary

A decision-making system for integrated incident detection and response has been developed.
The system employs sequential hypothesis testing techniques to dynamically optimize incident
response decisions. It systematically considers the trade-offs between the possible costs of a delayed
incident response decision and the improved decision-making capabilities that result from delaying
action until additional measurements are taken. In the first stage of the research, the mathematical
model underlying the decision-making system was developed and the solution algorithm was
implemented using a rolling-horizon framework. In the second stage, the decision-making system
(DMS) was evaluated using simulation testing, for a variety of traffic scenarios. For each traffic
condition, the performance of the proposed system was compared to that of a state-of-the-art incident
detection algorithm. It was found that the DMS achieved substantially shorter incident response time
without increasing the false-response or the non-response rates.

2. Body

IDEA product
The product from this research is a decision-making system for integrated freeway traffic

incident detection and response. This system employs sequential hypothesis testing techniques to
dynamically optimize incident response decisions by systematically considering the tradeoffs between
the possible  costs of a delayed incident response decision and the improved decision-making
capabilities which result from delaying action until additional measurements are taken.

The input components to this model include traffic parameters, their distributions under
different traffic conditions, traffic delay costs due to incidents, the costs of implementing response
measures, incident frequencies  in time and space, and the distribution of the incident durations. The
outputs are optimal incident response policies for each time period. In real-time operations, the
derived optimal policies can be used to select incident response decisions, given various traffic
conditions.

Concept and innovation
The proposed system is based on a novel approach to the incident response process. This

decision process is modeled as an optimization problem in which the uncertainties in the measured
traffic stream characteristics and the costs associated with incorrect decisions are considered
simultaneously.

Because incident detection and response decisions are made simultaneously, this system can
be viewed as an incident detection system. Compared to conventional incident detection systems, the
proposed system explicitly accounts for the presence of traffic stream measurement and interpretation
errors, and simultaneously considers incident detection decisions and possible response actions such
as dispatching emergency vehicles and traffic diversion to alternative routes.
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Investigation
Our example traffic network used in the model formulation is illustrated in Figure 1. The

simple network consists of a freeway link and a uni-directional surface street. A pretimed traffic
signal controls the junction of the on-ramp and surface street, while the junction of the off-ramp and
street is uncontrolled. The only freeway traffic management strategy used in this study is route
diversion to the surface street via the dissemination of incident information to freeway users.
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FIGURE 1 Hypothetical Traffic Network

The incident response decision-making process is formulated as a sequential hypothesis testing
problem. In each time period, the traffic control system obtains measurements of freeway traffic
conditions from a surveillance system and thus is confronted with two mutually exclusive hypotheses,
defined as:

H0: no incident has occurred on the freeway, and

H1: an incident has occurred on the freeway.

After each observation, the decision-making system will either:

(1) accept H0 and implement no response,

(2) accept H1 and initiate route diversion from the freeway to the surface street, or

(3) delay the decision to accept either hypothesis for an additional measurement period.

The decision ofwhether to accept either hypothesis or to delay the acceptance is based on the
expected losses associated with these decisions. The expected losses are computed on the basis of
the current non-incident probability. This probability is a function of all previously measured traffic
conditions and of the probability distributions of these measurements under incident and non-incident
situations.
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Mathematically, the current non-incident probability can be obtained recursively by Bayesian
updating as follows:

Pt- 1f0(zt)
Pt = Pt-1f0(zt) + (1-pt-1)f1(zt)

, t=1,2,... (1)

where: pt:: non-incident probability at time t;

f0(zt), f1(zt): probability density functions of the traffic measurements for non-incident and
incident conditions, respectively;

zt: traffic measurements obtained at the beginning of period t; examples of traffic
measurements include occupancy, speed and traffic flow.

p0: the prior used in the Bayesian updating formula which is obtained by a set of incident
likelihood prediction models as described in Appendix A. . .

The probability density function f0(zt) and f1(zt) must be calibrated from field data for specific
locations. Figure 2 shows the occupancy probability density functions for detector data obtained
from a Toronto freeway (1).

The optimal response policy can be solved using dynamic programming (2). The dynamic
programming formulation is given by:

Jt(pt) = min {(1-pt)L0, ptL1, (1-pt)C + E[Jt+1(pt+1)]}, , t=1,2,... (2)
zt+1

where:

Jt(pt): minimum expected cost-to-go function for time period t and state variable pt;

L0: loss resulting when no response is made to an incident; given by the expected difference
between the delay incurred with and without diversion.

L1: loss associated with a false response; given by the expected total travel time increase due
to unwarranted traffic diversion from the freeway to the surface street.

C: cost associated with waiting one more period before making a response, if an incident has
indeed occurred on the freeway. This cost is incurred by the drivers who pass location X2
in Figure 1 during one measurement interval.











Plans for implementation

This section discusses some of the implementation issues for the incident response decision-
making system developed in this research. These issue include: off-line data requirements, on-line
input requirements and computational needs. To date, our decision-making system was calibrated
for on-line inputs received from loop detectors. To accommodate outputs from other types of
detectors, the system’s models must first be calibrated off-line using historical data. Using multiple
detector types within the response algorithm is expected to increase the efficiency of the decision-
making system.

Currently, the decision-making system is operational for a single freeway section as described
in Figure 1. Therefore, the following discussion will emphasize implementation issues for a single
freeway section including the associated on-ramp, off-ramp and corresponding surface street section.
The implementation of the current version of the decision-making system requires the presence of
three loop detectors: one detector located immediately downstream of the off-ramp, one located
immediately upstream of the on-ramp, and one located on the off-ramp. If a single measurement of
traffic occupancy is used in the SPRT algorithm, the occupancy data is measured at the first detector.
This detector also provides measurements of traffic flow and speed for cost computation and
prediction at the beginning of each control interval. The second detector provides measurements of
traffic flow and speed downstream of the bottleneck, which are used for cost computation. The
traffic volume obtained from the off-ramp detector is used for measuring and updating the traffic
diversion rate from the freeway onto the surface street.

The following parameters must be specified off-line, prior to the operation of the decision-
making system.

1) The type of traffic measurements used; currently, our decision-making system accepts two
types of traffic measurement: upstream detector occupancy or relative spatial occupancy
difference between upstream and downstream freeway detectors.

2) The time interval between two observations; in the parametric analysis performed in this
study, we use 20 seconds.

3) The prior probability of non-incident; this is the output of the incident likelihood prediction
models, described in the Appendix of this report.

4) The length of the freeway section.

5) The capacity of the freeway section.

6) The free flow speed of the freeway section.

7) The length of the surface street section.

8) The uncongested speed on the surface street section.

9) The existing surface street flow.



10)    The initial fraction of freeway traffic that diverts in incident conditions; this quantity is
updated using the moving average method at the beginning of each control interval, after
obtaining new measurements from the off-ramp loop detector.

11) The initial estimate of the length of time period for which diversion from freeway to surface
street is performed.

12)

13)

The signal cycle length on the surface street.

The signal green time on the surface street for the traffic stream traveling in the direction
parallel to the freeway section.

The decision-making system uses the following on-line inputs, measured by the three loop detectors,
and updated at the start of each control interval:

1) Traffic flow at upstream detector.

2) Average vehicle speed at upstream detector.

3) Upstream detector occupancy.
. .

4) Traffic flow at downstream detector.

5) Average vehicle speed at downstream detector.

6) Downstream detector occupancy.

To extend the decision-making system to a freeway system consisting of multiple sections,
each equipped with the three detectors described above, the SPRT algorithm can be applied
sequentially one section at a time starting at the downstream end of the freeway system. Referring
to Equation (7), the derivation of the incident response decision for each section involves simple
algebraic operations, due to the closed form response policy. Solving for the optimal incident
response for one section took a fraction of a second, when the algorithm was implemented on a
Pentium personal computer during the simulation-testing experiments performed as part of this
research project. Therefore, the computation time required for running the algorithm in the case of
a freeway system consisting of N sections is less than N seconds. In on-line operations, the optimal
response decision for each freeway section can be activated as soon as it has been solved for, and
before the policies of the upstream sections have been obtained. This means that the SPRT algorithm
can be applied to a freeway system of any length with the use of the standard computational resources
available to Traffic Operations Centers, namely stand-alone Pentium PCs or Workstations.

The Indiana Department of Transportation has expressed interest in the product of this
research effort. The incident response decision-making system will be incorporated in the Borman
Advanced Traffic Management System, after it has been extended to handle multiple sections. The
decision-making system can be used by traffic control personnel to assist in responding to various
freeway incidents in a near optimal manner, to minimize traffic delays and reduce the number of
secondary incidents.
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3. Conclusions
In this research, we have developed a new methodology for freeway incident response

decision-making. This methodology, which is based on the Sequential Hypothesis Testing framework,
explicitly accounts for the losses associated with incorrect detection and response decisions and
optimizes the tradeoffs between these expected losses. To facilitate the application of the decision-
making methodology within the constraints of on-line traffic management, a rolling-horizon
implementation was used. Results obtained by simulation indicate that the new decision-making
system achieves shorter incident response times than traditional incident detection algorithms, without
increasing the false-alarm and non-response rates. This superior performance can be attributed to the
fact that the new system explicitly minimizes the sum of the expected losses associated with the
response decisions.
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Appendix A

A Prototype System for Real-Time Incident Likelihood Prediction (ITS-2)

This appendix describes the development of the incident likelihood prediction models that
provide the prior probabilities used in the computation of current incident probabilities as shown in
Equation (1) of this report. This work was performed as part of research contract ITS-2, which was
awarded to Purdue University by the National Research Council. The work was performed under
the supervision of Dr. Samer Madanat.

l

l

A.l. Problem Statement
The first objective of this research project was to develop models which can be used to

provide real-time predictions of freeway incident likelihoods. Such predictions will serve as the basis
for a proactive corridor-wide traffic control system. In such a system, traffic stream and
environmental conditions measured by surveillance sensors would be used as inputs for predicting
incident likelihoods in near real-time. Traffic control strategies can thus be immediately implemented
to reduce the probability of an incident, as well as to mitigate incident-related problems if they occur.

To prove the feasibility of this concept, it was essential to demonstrate the possibility of
accurate predictions of freeway incident probabilities, based on near real-time measurements of traffic
and weather variables. As described in the following section of this report, we have successfully
developed models for likelihood prediction of two critical types of freeway incidents: crashes and
overheating vehicles. These models capture the influence of various traffic and weather factors on
the probabilities of vehicle crash and overheating vehicle incidents. Furthermore, both models have
high internal and external validity, as demonstrated by their fit to the data and their predictive
accuracy, respectively.

The predictions given by the incident likelihood models can be combined with measurements
obtained by loop detectors to improve the accuracy of the estimates of incident probabilities.
State-of-the-art incident detection algorithms utilize only traffic information. By considering both
traffic and environmental variables, it is possible to achieve a more accurate estimate of incident
probability. This estimate is used as an input to a sequential incident-response decision-making
process, as shown in the body of this report.

A.2. Research Approach
This section describes the approach that was used in developing the freeway incident

likelihood prediction models. Because the outputs of the incident prediction models are probabilities
of a binary event, an appropriate methodology to use is binary logit. Binary logit is a powerful tool
which has been widely used in transportation demand modeling studies.

Eight-and-a-half months of incident, traffic and weather data for the Borman expressway were
used for model development. We sampled non-incident data from the non-incident population which
comprises those time periods in which no incidents were observed. Therefore, our sample is a
stratified random sample with two strata, incidents and non-incidents.

Two binary logit incident prediction models are presented in the following paragraphs. These
are models for two types of incidents: (i) overheating vehicles, and (ii) crashes. In Tables Al & A2
the column entitled “Independent Variable” lists the explanatory variables used in the model. The
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“Estimated Coefficient” column shows the contribution of each explanatory variable to the probability
of that type of incident and the “t-Statistic” column displays the statistical significance of that variable.
A t-statistic larger than 1.65 in absolute value means that the variable is a significant predictor of that
type of incident at the 90% confidence level. The goodness of fit of each model is represented by p2;
the larger the value of p2, the better the fit of the model to the data. In binary logit models, the
statistic “percent correctly predicted” provides an estimate of the predictive accuracy of each model.

For the overheating vehicle incident likelihood model, the variables peak, merge, temp
(temperature), rain, and spv (speed variance) were found significant.

The coefficient for the variable peak has a positive sign, which suggests that an overheating
vehicle incident is more likely to occur in a peak period than a non-peak period. This is expected
because traveling speeds are slower during the peak period. This variable is not significant at the
90% confidence level, as can be seen by the value of its t-statistic (1.62), possibly because the peak
period on the Borman expressway is widely spread out. The coefficient of the variable merge
represents the effect of location relative to on/off ramps on the likelihood of an overheating vehicle
incident. The positive sign of this coefficient indicates that an overheating vehicle incident is more
likely to occur in a merge section than a mid-section. The value of the t-statistic(2.19) suggests that
this effect is significant. The coefficient of the variable temp shows the effect of temperature on the
likelihood of an overheating vehicle incident. The positive sign suggests that an overheating vehicle
incident is more likely to occur in high temperature conditions than low temperature conditions,
because high temperatures aggravate engine overheating. The high t-statistic (4.63) strongly supports
this explanation. The coefficient of the variable rain has a negative sign which indicates that an
overheating vehicle incident is more likely to occur in sunny (non-rainy) conditions than in rainy
conditions. The t-statistic (-2.29) shows a significant effect for the variable rain. The coefficient of
the variable spv represents the effect of speed variance between lanes on the likelihood of an
overheating vehicle incident. The negative sign means that an overheating vehicle incident is more
likely to occur in lower speed variance conditions than higher speed variance conditions. This is
because when the speed variance is low, there are less overtaking opportunities, which increases the
likelihood of an overheating vehicle incident. The t-statistic (-2.37) suggests that this result is
significant. Overall, this model demonstrates good fit to the data, as can be seen from the value of
p 2 (0.21), and high predictive accuracy, as measured by the high percentage of observations correctly
predicted (74%).

For the crash model, the variables merge, visi (visibility), and rain are found significant. In
Table 2, the coefficient of the variable merge has a positive sign, which suggests that a crash is more
likely to occur in a merge section than a non-merge section. Though the t-statistic (1.46) indicates
that this variable is not strongly significant at the 90% confidence level, it has the correct sign,
because there are more vehicle interactions and therefore a higher crash probability in the merge
sections, where traffic flow is not as smooth as in the mid-sections. The coefficient of the variable
visi has a negative sign, which indicates that a crash is more likely to occur in low visibility
conditions, as expected. This variable is not strongly significant, as can be seen by its t-statistic
(-1.02) possibly because, in our dataset,  visibility is measured in miles, a unit which is not sufficiently
precise to capture the effect of low visibility on drivers. The coefficient of the variable rain has a
positive sign, which means that a crash is more likely to occur in rainy conditions than non-rainy
conditions. This is because the presence of rain reduces visibility and lowers pavement skid
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resistance. The high t-statistic (3.45) supports this explanation. The fit of this model is satisfactory,
as shown by its p2 value (0.14), as is its predictive accuracy (71% of observations correctly
predicted).

It should be noted that the estimated coefficients in these models are unbiased regardless of
the use of a stratified random sampling scheme in which incidents are oversampled. The only
correction that must be made is for the constant, using the method described in (5). The effect of this
correction is to reduce the probability of an incident by a factor proportional to the log of the fraction
of incident observations in the sample divided by the fraction of incident observations in the
population.

Table Al Incident Likelihood Model 1 for Overheating Vehicles

Independent Variable Estimated Coefficient I t-Statistic

constant -5.25

peak 0.40 . 1.62

merge 0.5 1 2.19

temp 0.03 4.63

rain -1.06 -2.29

spv -0.05 -2.37

number of observations 427

percent correctly predicted

p2

73.53

0.21

Table A2 Incident Likelihood Model 2 for Crashes I
Independent Variable  Estimated Coefficient t-Statistic I

constant -2.23

1.46 I

number of observations 434 I

 percent correctly predicted 
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